05.12.2025 • Forschung

Machine Learning–Enhanced Fischer–Tropsch Synthesis

Optimizing Catalysts and Process Conditions for Efficient Fuel Production

Univ.-Prof. Dr.-Ing. Harvey Arellano-Garcia, Brandenburgische Technische Universität Cottbus-Senftenberg, Fachgebiet Prozess- und Anlagentechnik

Photo
© Brandenburgische Technische Universität Cottbus-Senftenberg

Fischer–Tropsch synthesis (FTS) offers a promising route for producing clean, renewable fuels. Yet, designing efficient catalysts and determin­ing optimal process conditions remain major hurdles. Machine learning (ML) provides powerful means to address these challenges. Despite their potential, metal/zeolite catalysts are scarcely studied in ML-driven FTS research. This work applies an ML-based framework to model and optimize metal/zeolite catalysts for liquid fuel synthesis via FTS. Supervised learning methods reveal key structure–performance correlations, whereas multi-objective optimization identifies ideal catalyst and process parameters. The top solution is benchmarked against nearest experimental data. Results show CatBoost as the best-performing model, with Pt–Co/Beta treated with NaOH and NH4+ emerging as the optimal catalyst.

Kontakt zum Anbieter







CHEMonitor

Meinungsbarometer für die Chemieindustrie

Meinungsbarometer für die Chemieindustrie

Trendbarometer für die Chemie- und Pharmaindustrie. Präsentiert von CHEManager und Santiago Advisors Management-Beratung für Strategie und Organisation.

Batterie

Batteriechemie, Batterieproduktion und Batterierecycling

Batteriechemie, Batterieproduktion und Batterierecycling

Im Dossier "Batteriechemie, Batterieproduktion und Batterierecycling" stellen wir industrielle Lösungsansätze für den Batterieanlagenbau dar.

Meist gelesen