Foundation Model for Determining Suitable Process Parameters in Twin-Screw Extrusion

Extrusion is a complex process, and identifying suitable process parameters to achieve specific product or process properties is often a time-consuming manual task, which hinders automation and requires specialized staff.

Julia Burr, Fraunhofer ITWM

Photo
© Fraunhofer ITWM

Machine learning models present a promising solution, but they typically require large amounts of high-variational data for training to achieve satisfactory precision. To address this challenge, we propose the development of a foundation model for co-rotating twin-screw extruders, leveraging extensive simulated data for training. By employing a transformer architecture combined with a masking technique, this model will be capable of suggesting process parameters based on desired outcomes. We will also demonstrate how this model can be effectively fine-tuned for a specific extrusion plant using minimal data.

Julia Burr, Fraunhofer ITWM, Fraunhofer-Platz 1, Kaiserslautern, 67663 Germany
[email protected]

DOI: 10.1002/cite.70017

Anbieter

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Fraunhofer-Platz 1
67663 Kaiserslautern

Kontakt zum Anbieter







Themenspotlight

Digitalisierung industrieller Prozesse

Digitalisierung industrieller Prozesse

Die Digitalisierung in der Prozessindustrie ist ein Schlüssel für mehr Effizienz im Anlagenbetrieb, in der Instandhaltung und im Personaleinsatz, für die Kreislaufführung von Rohstoffen und nicht zuletzt zur Senkung der CO2-Emissionen.

Ethernet-APL

Automatisierung der Prozessindustrie bis in die Feldebene

Automatisierung der Prozessindustrie bis in die Feldebene

Ethernet-APL erfüllt zentrale Anforderungen moderner Prozessautomatisierung – in Theorie und Praxis. Lesen Sie hier mehr zur Technik, über Anwendungen und Nutzen.

Meist gelesen